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Abstract: Artificial neural networks (ANN) have been widely used for monitoring, control and optimization of various 

bioprocesses mainly because of their ability to understand a function from observations. However in the last two 

decades the application of intelligent controllers has grown tremendously in the field of bioprocess control. This paper 

provides a brief review the different theories of intelligent control along with a survey of their applications in various 

bioprocesses of control strategies in terms of type of controller, the structure, the algorithms, the objectives and the 

results of the work. Apart from demonstrating the successful applications of intelligent controllers in several control 

applications, the versatility of the controllers to be applied in multiple control methods has also been shown.  
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I. INTRODUCTION 

The use of biological agents such as cells, antibodies or 

even enzymes for research, production, etc. has been 

acknowledged and employed for centuries. Processing of 

biological materials known as bioprocess has number of 

applications including production of chemical compound 

amalgamated by some microorganism, cultivation of 

biomass, extraction of metabolites, production of 

antibodies and degradation of pollutants [1-3]. 

Bioprocesses are carried out in vessels called bioreactors, 

which provides necessary optimum conditions for 

bioprocesses to take place by using appropriate control 

strategies. Bioreactors are usually cylindrical vessels 

whose size varies from a few litres to cubic meters. They 

are a combination of controllers and various sensors to 

measure the pH level, temperature etc [4]. Bioreactors are 

classified into three types based on the mode of operation. 

They are batch, fed batch and continuous. In batch reactors 

feeding is done once before operation after no more 

feeding is done until the process is completed. The product 

or any other material withdrawals are made after 

completion of the process. In fed batch addition of feed 

(nutrients) is done by a predetermined rate during the 

fermenter operation but no withdrawals of any sort are 

done till the process is completed. In continuous mode 

feed is added to the bioreactor and product is removed 

continuously [5,6]. The control of optimum condition in 

bioreactor is achieved by using appropriate control 

strategies with a combination of various sensors to 

measure the pH level, temperature etc. and controllers. 

For high productivity and high quality products, basic 

process parameters, that is pH, Dissolved Oxygen (DO), 

stirring speed, foam level temperature, etc. in bioreactor 

need to be controlled appropriately and these parameters 

must follow a specific profile of temperature, pH and DO 

in bioreactor for optimum cellular activity [7]. This is 

achieved indirectly by changing some other parameters. 

For example, pH, temperature and DO is manipulated by 

varying the flow rate of acid or base, by changing the flow 

rate of fluid through the cooling coil/jacket and agitation 

of mixture in the bioreactor respectively. Many  

 

researchers have been developing control strategies to 

optimize the bioreactor process, but this still remains a 

challenging task.   

 

This paper provides a review of different applications of 

intelligent control strategies namely   nonlinear model 

predictive control, adaptive control and fuzzy logic control 

in terms of their theory and a few applications scenarios.in 

terms of type of controller, the structure, the algorithms, 

the objectives and the results of the work have also been 

highlighted. 

 

II. NONLINEAR MODEL PREDICTIVE 

CONTROL 

A few case studies on applications of Non Linear Model 

Predictive Controllers to bioprocesses are discussed in the 

following sections. 
 

A. Cultures of budding yeast in a continuous bioreactor 

A model predictive controller was formulated as an 

infinite horizon open loop to control the dilution rate and 

the feed substrate concentration Zhu et al. [8]. The control 

was based on nonlinear ordinary differential equation 

model formed by spatially discretizing the population 

balance equations (PBE) for the cell mass distribution to 

the substrate mass balance.  
 

Two controllers were developed, the first one used full 

order output vector which results in a configuration of 2 

inputs and 110 outputs. The control horizon for this 

controller was chosen as 5. The second controller uses 

reduced-order output vector which results in a lower 

dimensional problem i.e. 2 inputs and 14 output variables. 

The control horizon for this controller is also 5. Both 

controllers were tested with and without disturbance 

models. Simulations showed that when a subset of 

discretized cell number distribution is used much better 

results are obtained. Ability of the MPC controller based 

on the full-order ouput vector to stabilize a culture which 

was oscillating originally at an operating point which is 

desirable is shown in Fig 1. 
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Fig 1 Oscillation attenuation: full-order output vector with 

(- -) and without (−) disturbance model and open loop 

response (.....) 

 

The same test was simulated with reduced-order output 

vector in Fig 2. We find that although the results are 

similar but the MPC controller with reduced-order output 

vector gives smoother input moves. 

 
Fig 2 Oscillation attenuation: reduced-order output vector 

without disturbance model (−) and open loop response (--) 

 

B. Baker’s yeast production in a continuous fermenter 

Optimal control of biomass growth based on substrate 

concentration was achieved by Ramaswamy et al. [9] by 

applying model predictive control to a non-linear 

continuous fermenter used in the production of baker’s 

yeast.  

 

The MPC control algorithm has been mathematically 

represented as 

   * (   )  (     )    (       ) +   
 , (     )-   ∑  , (     )  (     )   (     

   

   )-               (1) 

 

u (k+j|k) is the input u(k+j) calculated from the 

information available at time k, y(k+j|k) is the output 

y(k+j) calculated from the information available at time k, 

  (     ) = u (k+j|k) - u (k+j -1|k) . J is the objective 

function. The non-linear arguments of the control horizon 

(M) and the prediction horizon (P) are   and L 

respectively and are defined as 

  , (     )    ( )-
  , (     )     ( )-   
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where   ( ) and   ( ) are steady state targets for u and y, 

respectively, T  is the sampling interval and Q,R and S are 

positive definite weighting matrices. 

 

 The model control horizon was set to 1. The prediction 

horizon was set to 15 while the weight matrices Q, R and 

S were set to 10, 0 and 1. All these parameter values were 

determined by trial and error. It was seen in simulations 

that when the initial conditions have low quantities of cell 

mass the system behaves similar to a batch reactor with 

the controlled variable completely turned off. It was also 

noted that when high cell mass and substrate was present 

in the initial conditions the manipulated variable becomes 

very large and the valves are opened completely. In case 

the cell mass quantities are high but the substrate 

conversion is low the manipulated variable increases in the 

beginning but after some time decreases significantly. 

Hence it was concluded that well-made controller designs 

may provide poor control causing batch or washout 

modes.  The schematic representation of the MPC control 

algorithm is shown in Fig 3. 

 
Fig 3 Schematic representation of the MPC control 

algorithm 

 

C. Penicillin production in a fed-batch fermenter 

Model predictive control was used for control of a 

penicillin production in a fed batch bioreactor by Ashoori 

[10]. A linear predictive controller (LPC) with prediction 

horizon and control horizon both set to 24h was used at 

first. The controller did not show satisfactory performance, 

which was expected since the penicillin production 

process is highly non-linear. After this a nonlinear 

predictive controller (NLPC) was used with prediction 

horizon was 12 hours and the control horizon was 9hours. 

This showed acceptable performance as the penicillin 

production was 25% greater than when the linear 

controller was used. In order to reduce computational costs 

piecewise linear models are used to solve the nonlinear 

model of the process. Neural networks are used to select 
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the fuzzy weights of these models. The input space is 

hence divided into small subspaces which are linear and 

possess fuzzy validity functions. So each linear model is a 

fuzzy neuron based on the validity it holds in its region. 

The complete model is hence a neuro-fuzzy model with 

one hidden layer and a linear output. This model just 

calculates the output as the weighted sum of the locally 

linear models. Hence the computational cost is reduced 

and the production process is optimized. The multiple-

model) structure is shown in Fig. 4. 

 
Fig 4 Multiple-model (including locally linear neuro-fuzzy 

models) structure 

 

D. Hydrogen production in continuous anaerobic digesters 

By manipulating the input flow rate by means of model 

predictive control, of a continuous fermentation reactor, 

the production of bio-hydrogen was increased by 75% by 

Aceves-Lara et al. [11]. A two liter reactor continuous 

stirred tank reactor with a 1270 mL useful volume was 

used. The control horizon is set to 15min while the 

prediction is set to 3.5h. To obtain values of states and 

process inputs at any time an asymptotic observer was 

used. The experiment was run for 25 days. For the first 15 

days only the observer performance was studied i.e. the 

MPC was turned off. Estimations by the observer were 

seen to be very near to experimental data. After this the 

controller was switched on for 10 days. It was noted that 

the controller adjusted the input flow rate and the quantity 

of hydrogen produced increased by almost 75%. Hydrogen 

gas flow rate is shown in Fig 5 below. 

 
Fig 5 Hydrogen gas flow rate with and without control 

 

III. ADAPTIVE CONTROL 

A few case studies describing the applications of adaptive 

control to bioprocesses have been discussed in the 

subsequent sections. 

A. Production of complex therapeutical molecules by use 

of micro-organisms 

An algorithm for the adaptive control of dissolved oxygen 

concentration in a bioreactor with respect to the agitation 

rate was developed by Diaz et al. [12].  Recursive least-

squares identification method was used for the online 

estimation of the parameters. The adaptive controller was 

based on the Generalized Predictive Control [13]. For this 

type of adaptive controller no theoretical knowledge of the 

mechanisms of the bioreactor is required. In the 

experimental setup a pulse pump was used to inject 

substrate, on-off PID controllers have been used to monitor 

and control the anti-foam, pH, temperature, air flow and 

agitation rate. The control algorithm was developed in 

LabVIEW. The efficiency of the dissolved oxygen control 

was seen to be better than 1% regardless of the 

disturbances caused by culture sampling, anti-foam 

additions and changes in air flow. Tests with high noise 

levels of the sensor and model errors showed the 

robustness of the controller as it provided correct controls 

under these conditions. The schematic diagram of the 

culture system is shown in Fig 6. 

 

B. Microbial growth with Haldane’s Kinetic 

For a continuous stirred tank bioreactor with Haldane’s 

kinetics an adaptive extremum seeking control scheme was 

presented by Marcos et al. [14]. Parameter estimation 

algorithm was derived from production rate and stabilized 

substrate concentration. Lyapunov function was used to 

derive the update laws. The proposed extremum seeking 

controller is used to thrust biomass and substrate 

concentrations to desired set points to ensure optimization 

of the production rate. 

 

To make sure that the production rate converges to an area 

of its maximum a persistence of excitation condition is 

prepared. The simulation is done in two steps. The first 

simulation is done with a simple microbial process with 

Haldane’s kinetics. The results showed that the production 

rate reaches the maximum point effectively and rapidly. 

even in the presence of injection of the excitation signal. 

 
Fig 6 Schematic drawing of the culture system 

 

The second part of simulation is done on the anaerobic 

digestion process which was mentioned earlier. The results 
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of this simulation showed that the controller was able to 

track the unknown optimum although convergence of 

parameters to their true value was not possible due to the 

bias generated in the estimation routine by modelling 

uncertainty. Both cases however demonstrated the ability 

of the developed controller to recover unknown optimum. 

The simulation results for the anaerobic digestion process 

are shown in Fig. 7. 

 
Fig 7 Anaerobic digester Performance of the extremum 

seeking control 

 

(Dashed line represent square wave influent 

concentrations and optimum) 

C. Depollution of wastewater 

Depollution wastewater was carried out in a recycle 

bioreactor with a non-linear multivariable adaptive control 

strategy by Petre et al [15].  A novel state observer coupled 

with a parameter estimator was used for on-line estimation 

of parameters. The concentrations of biomass in the aerated 

tank and the recycled biomass were estimated by using an 

asymptotic state observer while the parameter vector which 

contains the unknown kinetics and/or the yield coefficients 

were estimated on-line by an appropriately parameter 

estimator.  

 

Fig. 8 shows the diagram of the designed controller. The 

performance of the multivariable adaptive controller was 

compared with exact linearizing controller by simulation. It 

was seen that both pollutant concentration and dissolved 

oxygen level concentrations were tracking the preset 

reference profile which ensured a low level of pollution. 

Simulations with noise were also carried out and the results 

were comparable to the noise free results. It was confirmed 

that the controller is more effective than an exactly 

linearizing non-adaptive controller by simulation.  

 
Fig 8 Block diagram of the designed adaptive system 

D. Water hydro servo cylinder system 

Comparison of the control performance of simple adaptive 

control (SAC) to water hydraulic servo cylinder system 

was done by Ito [16]. The aim of the control strategy was 

to design an adaptive input for the cylinder position which 

tracks a predefined reference model. 

 

The block diagram of the designed SAC system is shown 

in Fig 9. The overall structure consisted of two feedback 

controllers and two feed forward controllers. It is 

implemented based on the command generator tracker 

which provides feed forward control input for perfect 

tracking and the almost strictly positive real property. Both 

adaptive control input and parameter update are derived 

from Lyapunov theory. Simulations were done for simple 

adaptive controller, model reference adaptive controller 

(MRAC) and PI controller. Overshoot was only seen in PI 

controller while SAC and MRAC showed almost the same 

control performance. Since SAC has a simpler structure 

and fewer adaptive parameters than MRAC and also shows 

nearly the same performance as MRAC, it makes SAC 

more practical.  

 

IV. FUZZY LOGIC CONTROL 
A few illustrations of fuzzy controls in bioprocess control 

are given next.  

A. Cephalosporin C batch production 

The automatic selection of the moment of feeding of 

inverted sucrose for Cephalosporin C batch production 

process was achieved using a fuzzy control system [17]. 

The authors in this paper have used carbonic gas 

percentage in the outflow as a variable to determine the 

moment of feeding for the process. They have carried out 

two experiments. The first one was to collect the data for 

determination of membership functions and rule base for 

the fuzzy controller while the second one for was testing 

feasibility and robustness. Isosceles triangle membership 

functions have been used. They have considered the input 

values which are to be fuzzyficated as crisp since 

significant noise wasn’t observed in the direct readings. 

 
Fig 9 SAC system with parallel feed forward controller 

 

The designed fuzzy control system operates on three 

reasoning levels. First one known as the attention level has 

4 rules which determine only the moment at which 

tracking of percentage CO2 is initiated based on how high 

the CO2 percentage is present in the outflow. The second 

one, which is known as the action level, has 2 rules to 

track the variations of the CO2 percentage (∆CO2) to 
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determine the point of maximum percentage at which the 

feeding will initiate. The last reasoning level protection 

has 4 rules and aims to prevent possible errors which may 

occur at points where outflow gases passes through silica 

columns which removes the moisture. These points may 

be confused with the points of maximum CO2 

concentration. Hence the protection level identifies the 

difference based on the fundamental differences of the 

variables, specifically the fast increase in CO2 level after a 

minor time interval in the column exchange.  

 

For the defuzzification pre-determined criterion values 

were used to get the output. The controller was tested 

using the second experiment and the controller behaved as 

expected. The action level starts the feeding time exactly 

when the CO2 percentage is maximum and the protection 

level cancels out the feeding in case of column exchanges. 

Hence the paper suggests a successful technique for the  

development of the feeding strategies using fuzzy logic. 

The response of the fuzzy controller has been shown in 

Fig 10.Figures. 

 

B. Baker’s Yeast fermentation in a production scale 

bioreactor 

Baker’s yeast fermentation has been carried out in a 

production scale fed-batch reactor to control substrate and 

air flow rate based on the ethanol concentration, dissolved 

oxygen concentration, elapsed time and specific growth 

(estimated) by Karakuzu et al. [18]. 

 
Fig 10 Fuzzy controller response 

 

A fuzzy controller based on the Mamdami fuzzy inference 

system using. T-norm and T-conorm operators are used by 

the controller. The output the centre of area defuzzification 

scheme is used to obtain the output. Since the availability 

of cheap and reliable online sensors for measuring key 

parameters in the market is limited, two neural network 

soft sensors for estimation of biomass concentration were 

developed. The first one showed satisfactory results when 

the initial conditions were fixed but in case of varying 

initial conditions the results were not satisfactory. The 

second sensor was developed to work under varying initial 

conditions. The sensor showed robust and satisfactory 

results even in case of sharp changes in any input. The 

fuzzy controller was based on the results of the second 

sensor. The simulation was carried out in Matlab 

Simulink. The controller was run with conditions 

comparable to production scale.  

 

The results of molasses and air feeding profiles were 

compared to the ones in production. A high similarity was 

observed in molasses feeding profile. For the air feeding 

profile similar but lower airflow rates were detected which 

shows further optimization of airflow rate as it reduces 

aeration costs. Block diagram of the control structure is 

shown in Fig 11. 

 

C. Biodegradation of mixed wastes in a continuous stirred 

bioreactor 

Galluzzo and Cosenza  aim at controlling the phenol 

concentration of a continuous stirred bioreactor with cell 

recycle in which the biodegradation of mixed wastes is 

carried out in order to drive the process to a desired set 

point and prevent the system from bifurcating [19].  

 
Fig 11 Block diagram of the control structure 

 

The controller developed for this purpose is a type-2 fuzzy 

logic controller (FLC). The type-2 FLC just like a type-1  

FLC has four components: Rules, Fuzzifier, Inference-

engine and Output-processor but the output-processor of 

the type-1 is just a defuzzifier while that of the type-2 

contains two parts: Type-reducer and Defuzzifier. The 

type-reducer reduces the output of the controller to an 

output similar to that of a type-1 FLC and the defuzzifier 

calculates the crisp output by simple average of the end 

points of an interval set.  

 

The membership function used is the Gaussian shape since 

it gave the best results in simulation in terms of integral of 

absolute error (IAE). It has a set of 49 fuzzy control rules. 

The results were compared with a type-1 FLC and a PI 

controller. The type-2 FLC showed the best performance 

categorized by oscillations with amplitude smaller than 

that of type-1 FLC and the PI controller. It was also the 

first controller to reach the set point value. The type-2 

FLC show robustness and ensure a control which even 

though is not optimal but much more efficient that the 

type-1 FLC and the PI controller. The Type-2 FLC is 

given below in Fig 12. 

 
Fig 12 Type-2 Fuzzy logic controller 
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D. Continuous stirred tank reactor with non-monotonic 

growth kinetics 

 

A fuzzy servo controller was designed to track two 

switching reference signals near the optimal productivity 

for a continuous stirred tank bioreactor (CSTB) with 

substrate inhibition kinetics in order to control the CSTB 

near its maximum productivity condition [20]. The 

dilution rate was used as the control input. The two 

reference signals that were evaluated were substrate and 

biomass.  

  

A parallel distributed compensation was used to build a 

fuzzy controller from the Takagi-Sugeno model. The 

fuzzy system was obtained through nonlinear sectors. The 

system has a set of 8 rules and is used to maintain a CSTB 

at the optimal point by switching between unstable and 

stable equilibrium points and uses a center average 

defuzzifier. Two tracking schemes were developed. First 

one was to track a reference signal to maintain optimal 

substrate concentration while the second one was to track 

a reference signal to maximize biomass productivity. The 

fuzzy servo controller was compared with PID and LQ 

controllers.  

 

The fuzzy servo controller showed nearly the same settling 

time as the PID for reference tracking to maintain optimal 

substrate but there was no overshooting during the 

reference tracking to maximize biomass production. The 

settling time for the fuzzy servo controller was half that of 

the PID. The LQ controller in both cases showed superior 

performance than the fuzzy servo and the PID controllers. 

Moreover the biomass fuzzy controller had a bigger 

instability region than the substrate fuzzy controller. The 

comparison of the biomass fuzzy servo controller with 

PID and LQ controllers in Fig 13. 

 
Fig 13 Comparison of the biomass fuzzy servo controller 

with PID and LQ controllers 

 

V. CONCLUSION 
A bioprocess like any other process  is said to be 

controlled effectively if the set objectives of the process 

are completed successfully with reliability and promptness 

by using accurate control of the process parameters. Many 

researchers have been developing control strategies to 

optimize the bioreactor process, but this still remains a 

challenging task. In this paper a few applications of 

intelligent controllers have been discussed to show the 

effective and versatile use of these controllers in various 

bioprocesses. It was noted that majority of studies were 

done using simulations while very few have been 

implemented to actual systems which has opened a door to 

many implementation possibilities.. 
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